Electroweak unification

The problem of divergence

 A theory of weak interactions only by means of W^{\pm} bosons leads to infinities

Figure 108: Examples of divergent processes

Introduction of the Z^0 boson fixes the problem because the addition of new diagrams cancel out the divergencies:

Figure 109: Additional processes which cancel the divergence

Basic vertices with Z^0 bosons have:

- − Conserved lepton numbers
- − Conserved flavour

Figure 110: Z^0 -lepton and Z^0 -quark basic vertices

u d' $\left(\begin{array}{c} u \\ v \end{array}\right)\left(\begin{array}{c} c \\ c \end{array}\right)$ *s*' $\begin{pmatrix} c \\ d \end{pmatrix}$ $d' = d\cos\theta_C + s\sin\theta_C$
 $d' = d\sin\theta + s\cos\theta$ $s' = -dsin\theta_C + s\cos\theta_C$ where u , c , d' and s' are wave functions Reminder of quark mixing in W vertices:

At Z^0 vertices it is not necessary to introduce quark mixing:

Note that the flavour is conserved in neutral current interactions but not charge current interactions.

Test of flavour conservation

Flavour is conserved at a Z^0 vertex (in contrast to a W vertex).This can be verified by experiments.

Consider the following two possible processes that change strangeness:

> $K^+ \rightarrow \pi^0 + \mu^+ + \nu_\mu$ (a) and $K^+ \rightarrow \pi^+ + v_l + v_l$ (b)

Figure 111: Decay (a) is allowed; decay (b) – forbidden

The measured upper limit on the ratio of the decay rates (b) to (a) is:

$$
\frac{\sum \Gamma(K^+ \to \pi^+ + \nu_l + \nu_l)}{\Gamma(K^+ \to \pi^0 + \mu^+ + \nu_\mu)} < 10^{-7}
$$

The unification condition and masses

The coupling constants at γ -, W[±] and Z⁰-vertices are not independent from each other. In order for all infinities to cancel in electroweak theory, the unification relation and the anomaly condition have to be fulfilled.

The *unification condition* establishes a relation between the coupling constants $(\alpha_{em} = e^2/4\pi \epsilon_0)$:

$$
\frac{e}{2\sqrt{2\epsilon_0}} = g_W \sin\theta_W = g_Z \cos\theta_W \qquad (114)
$$

θ_W is the *weak mixing angle*, or *Weinberg angle*:

$$
cos \theta_W = \frac{M_W}{M_Z} \tag{115}
$$

→ The anomaly condition relates electric
charges:
$$
\sum Q_l + 3\sum Q_q = 0
$$

q

l

Historically, the W and Z masses were predicted from low energy interactions.

In the zero-range approximation i.e. in the low-energy limit, the charged current reactions are characterized by the Fermi constant (*GF*):

$$
\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{M_W^2} \Rightarrow M_W^2 = \frac{g_W^2 \sqrt{2}}{G_F} = \frac{\pi \alpha}{\sqrt{2} G_F \sin^2 \theta_W}
$$

Introducing the neutral current coupling constant (G_z) (also in the low energy zero-range approximation)

$$
\frac{G_Z}{\sqrt{2}} = \frac{g_Z^2}{M_Z^2} \Rightarrow M_Z^2 = \frac{\pi \alpha}{\sqrt{2} G_F \cos^2 \theta_W \sin^2 \theta_W}
$$

and the weak mixing angle can be expressed as

$$
\frac{G_Z}{G_F} = \frac{g_Z^2 M_W^2}{g_W^2 M_Z^2} = \sin^2 \theta_W
$$

From the measurements at low energy of rates of charged and neutral currents reactions it is therefore possible to determine that:

$$
\sin^2 \theta_W = 0,277 \pm 0.014
$$

from this measurement at low energies (below the W and Z masses) it was possible to predict the masses of W and Z:

 $M_W = 78.3 \pm 2.4 \text{ GeV}/c^2$; $M_Z = 89.0 \pm 2.0 \text{ GeV}/c^2$

When the W and Z boson were discovered at CERN with the masses predicted from low energy experiments it was a strong confirmation that the electroweak theory was correct.

Today the most precise estimation of the Weinberg angle using many measurements give:

> θ *2* $sin^2\theta_W = 0.2255 \pm 0.0021$

Putting this value into the previous formulas give M_W = 78.5 GeV and M_Z = 89.3 GeV

while the direct measurements of the masses give M_W = 80.4 GeV and M_Z = 91.2 GeV

Figure 112: Examples of higher order contributions to inverse muon decay

The difference is due to higher-order diagrams which were not included in the previous low-energy formulas.

Since the top-quark is involved in higher order corrections, the measurement of electroweak processes could be used to predict the top-quark mass before it was discovered:

 $m_t = 170 \pm 30 \text{ GeV}/c^2$

The directly measured mass of the top quark at Fermilab by CDF is today

 $m_t = 176 \pm 5 \text{ GeV}/c^2$

in perfect agreement with the prediction !

Electroweak reactions

In any process in which a photon can be exchanged, $a Z⁰$ boson can be exchanged as well

Figure 113: Z^0 and γ couplings to leptons and quarks

Example: The reaction $e^+e^- \rightarrow \mu^+\mu^-$ has two dominant contributions:

Figure 114: Dominant contributions to the e^+e^- annihilation into muons

With simple dimensional arguments one can estimate the cross section for the photon- and Z-exchange process at low energy:

$$
\sigma_{\gamma} \approx \frac{\alpha^2}{E^2} \qquad \sigma_Z \approx G_Z^2 E^2
$$

Where E is the energy of the colliding electron and positron beams.

From these expressions, the ratio of σ _z and σ _{γ} is:

$$
\frac{\sigma_Z}{\sigma_\gamma} \approx \frac{E^4}{M_Z^4} \tag{116}
$$

One can conclude that at low energies the photon exchange process dominates. However, at energies E_{CM} =M_z, this low-energy approximation fails

The Z^0 peak is described by the Breit-Wigner formula:

Figure 115: The cross sections of e^+e^- annihilation into $\mu\mu$

$$
\sigma(ee \to \mu\mu) = \frac{12\pi M_Z^2}{E_{CM}^2} \left[\frac{\Gamma(Z^0 \to ee)\Gamma(Z^0 \to \mu\mu)}{(E_{CM}^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \right]
$$

The number of neutrino families

Figure 116: The leptonic decay of the Z^0 .

All these peaks can be fitted with the Breit-Wigner formula:

$$
\sigma(e^+e^- \to X) = \frac{12\pi M_Z^2}{E_{CM}^2} \left[\frac{\Gamma(Z^0 \to e^+e^-)\Gamma(Z^0 \to X)}{(E_{CM}^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \right]
$$

Here Γ ₇ is the total Z⁰ decay rate, and Γ _Z(Z⁰ \rightarrow X) is the decay rates to the final state X.

The height of the peak (at E_{CM} =M₇) is proportional to the product of the branching ratios:

$$
B(Z^{0} \to e^{+}e^{-})B(Z^{0} \to X) \equiv \frac{\Gamma(Z^{0} \to e^{+}e^{-})\Gamma(Z^{0} \to X)}{\Gamma_{Z}} \frac{\Gamma(Z^{0} \to X)}{\Gamma_{Z}}
$$

Fitted parameters of the Z^0 peak:

(117) $M_Z = 91,187 \pm 0,007$ GeV/ c^2 Γ ₇ = 2,490 ± 0,007 GeV

Fitting the peak give not only M_Z and Γ _Z but also partial decay rates:

$$
\Gamma(Z^0 \to \text{hadrons}) = 1,741 \pm 0,006 \text{ GeV} \qquad (118)
$$

 $\Gamma(Z^0 \to l^+l^-) = 0.0838 \pm 0.0003 \text{ GeV}$ (119)

 \rightarrow The decays $Z^0 \rightarrow l^+l^-$ and $Z^0 \rightarrow$ *hadrons* account for only about 80% of all Z^0 decays

 \rightarrow The remaining decays are those containing only neutrinos in the final state

$$
\Gamma_Z = \Gamma(Z^0 \to \text{hadrons}) + 3\Gamma(Z^0 \to l^+l^-) +
$$

+ $N_V \Gamma(Z^0 \to \nu_l \overline{\nu}_l)$ (120)

From the measurement of all other partial widths one can estimate the partial decay to neutrinos which cannot be measured directly.:

```
NνΓ Z
     0
(Z^{\nu} \to \nu_{\ell} \nu_{\ell}) = 0,498 \pm 0,009 \text{ GeV}
```

$$
\Gamma(Z^0 \to \nu_l \overline{\nu}_l) = 0.166 \text{ GeV} \tag{121}
$$

which means that $N_v \approx 3$. More precisely,

$$
N_{\rm v} = 2,994 \pm 0,011 \tag{122}
$$

Figure 117: The decay of the Z^0 to hadrons and theoretical predictions based on different assumptions for the number of neutrino families (N)

There are no explicit restrictions on the number of generations in the Standard Model

 \rightarrow However, the analysis of the Z^0 line shape shows that there are 3 and only 3 kinds of light neutrinos.

 If neutrinos are assumed having negligible masses as compared with the Z^0 mass, there must be only THREE generations of leptons and quarks within the Standard Model.

Reminder:

The lifetime (τ) , the branching ratio (B) and the partial decay width (Γ) are related to each other by

$$
\tau = \frac{B}{\Gamma}
$$

$$
\tau = \frac{B_Z}{\Gamma_Z} = \frac{B_{had} + B_{ll} + B_{VV}}{\Gamma_{had} + \Gamma_{ll} + \Gamma_{VV}}
$$

$$
\tau = \frac{B_{had}}{\Gamma_{had}} = \frac{B_{ll}}{\Gamma_{ll}} = \frac{B_{vv}}{\Gamma_{vv}} = 3 \times 10^{-25} s
$$

since

$$
B_{had} = 0, 70 \t\t \Gamma_{had} = 1, 74 GeV
$$

\n
$$
B_{ll} = 0, 10 \t\t \Gamma_{ll} = 0, 25 GeV
$$

\n
$$
B_{VV} = 0, 20 \t\t \Gamma_{VV} = 0, 50 GeV
$$

and

$$
1 \, \text{GeV}^{-1} = 6,582 \times 10^{-25} \, \text{s}
$$