VII. QCD, jets and gluons

Quantum Chromodynamics (QCD)

 Quantum Chromodynamics (QCD) is the theory of strong interactions.

 \rightarrow Interactions are carried out by a massless spin-1 particle – *gauge boson*

 \rightarrow In quantum electrodynamics (QED) gauge bosons are photons, in QCD – *gluons*

 \rightarrow Gauge bosons couple to conserved charges: photons in QED – to electric charges (Q), and gluons in QCD – to colour charges: colour hypercharge (Y^c) and colour isospin charge (I₃^c).

The strong interaction acts the same on u,d,s,c,b and t quarks because the strong interaction is **flavour-independent.**

REMINDER:

In the quark model we have introduced flavour hypercharge (Y) and flavour isospin (I_3) in addition to the electric charge (Q).

In quantum chromodynamics we introduce in a similar fashion colour hypercharge (Y^c) and colour isospin charge (I_3^c) .

Gluons carry colour charges themselves!
\n
$$
\Gamma_3^C = 1/2
$$
 $\gamma^C = 1/3$ $\gamma^C = 1/3$ $\gamma^C = 1/2$ $\gamma^C = 1/3$

Figure 58: Gluon exchange between quarks.

The colour quantum numbers of the gluon in the figure above are:

$$
I_3^C = I_3^C(r) - I_3^C(b) = \frac{1}{2}
$$
 (86)

$$
Y^C = Y^C(r) - Y^C(b) = 1
$$

Gluons can couple to other gluons since gluons carry colour charge !

Figure 59: Lowest-order contributions to gluon-gluon scattering.

- \rightarrow All observed states (all mesons and baryons) have zero colour charge - colour confinement.
- \rightarrow Gluons does not exist as free particles since they have colour charge.
- Æ Bound colourless states of gluons are called *glueballs* (not detected experimentally yet).

The principle of asymptotic freedom:

At short distances the strong interactions are weaker \Rightarrow quarks and gluons are essentially free $particles \Rightarrow$ the interaction can be described by the lowest order diagrams.

 \rightarrow At large distances the strong interaction gets stronger \Rightarrow the interaction can be described by high-order diagrams.

The quark-antiquark potential is:

$$
V(r) = -\frac{4}{3} \frac{\alpha_s}{r} \qquad (r < 0, 1 \, \text{fm})
$$
\n
$$
V(r) = \lambda r \qquad (r \ge 1 \, \text{fm})
$$

where α_s is the strong coupling constant and *r* the distance between the quark and the antiquark.

 \rightarrow Due to the complexity of high-order diagrams, the very process of confinement can not be $calculated$ analytically \Rightarrow only numerical models are available.

The invariant mass of the hadrons is given by:

$$
W^2 = \overline{P}_4 \cdot \overline{P}_4 = (\overline{P}_3 + \overline{q})^2
$$

The strong coupling constant

The strong coupling constant α_s is the analogue in QCD of α_{em} and it is a measure of the strength of the interaction.

 \rightarrow α_{s} is not a true constant but a "running" constant" since it decreases with increasing Q^2 .

Example 2 In leading order of QCD, α_s is given by

$$
\alpha_{s} = \frac{12\pi}{(33 - 2N_{f})ln(Q^{2}/\Lambda^{2})}
$$
 (87)

Here N_f is the number of allowed quark flavours, and Λ≈0.2 GeV is the QCD scale parameter which has to be defined experimentally.

Figure 60: The running of the strong coupling constant.

Different types of accelerators

−

Electron-positron annihilation

A clean process with which to study QCD is:

 $e^+ + e^- \rightarrow \gamma^* \rightarrow$ hadrons (88)

Figure $61: e⁺e⁻$ annihilation into hadrons.

Figure 62: An e⁺e⁻ annihilation event in which two quark jets were created (the event was recorded by the JADE experiment at DESY).

 $\bullet \bullet$ In the lowest order e^+e^- annihilation process, a photon or $a Z⁰$ is produced which converts into a quark-antiquark pair.

- **Example 3** The quark and the antiquark *fragment* into observable hadrons.
- \rightarrow Since the quark and antiquark momenta are equal and counterparallel, hadrons are produced in two *jets* of equal energies going in opposite direction.
- The direction of a jet reflects the direction of the corresponding quark.

 \rightarrow The total cross-section of $e^+e^- \rightarrow$ *hadrons* is often expressed as:

$$
R \equiv \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}
$$

The cross section for muon production and hadron production is the same if the number of quark flavours and colours are taken into account:

$R = N_c \sum e_q^2$

 \Rightarrow Here N_c = 3 is the number of colours and e_q is the charge of the quarks.

3 If
$$
\sqrt{s} < m_{\psi}
$$
 then
\n
$$
R = N_c(e_{u}^{2} + e_{d}^{2} + e_{s}^{2}) = 3 ((-1/3)^{2} + (-1/3)^{2} + (2/3))^{2} = 2
$$
\nIf $\sqrt{s} < m_{\Upsilon}$ then $R = N_c(e_{u}^{2} + e_{d}^{2} + e_{s}^{2} + e_{c}^{2}) = 10/3$ and
\nIf $\sqrt{s} > m_{\Upsilon}$ then $R = N_c(e_{u}^{2} + e_{d}^{2} + e_{s}^{2} + e_{c}^{2} + e_{b}^{2}) = 11/3$

If the radiation of hard gluons is taken into account, an extra factor proportional to α_s has to be added:

$$
R = 3\sum_{q} e_q^2 \left(1 + \frac{\alpha_s(Q^2)}{\pi} \right)
$$

Figure 63: The measured R-value and the predicted R-value for different theoretical assumptions.

 $\bullet \bullet$ A study of the angular distribution of the jets give information about the spin of the quarks.

 \rightarrow The angular distribution of the process

 $e^+ + e^- \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$ is given by:

$$
\frac{d\sigma}{dcos\theta}(e^+e^- \to \mu^+\mu^-) = \frac{\pi\alpha^2}{2Q^2}(1 + cos^2\theta)
$$

where θ is the production angle with respect to the direction of the colliding electrons.

 \rightarrow If quarks have spin 1/2 they should have the following angular distribution:

$$
\frac{d\sigma}{d\cos\theta}(e^+e^- \to q\bar{q}) = N_c e_q^2 \frac{\pi \alpha^2}{2Q^2} (1 + \cos^2\theta)
$$

where e_q is the fractional charge of a quark and $N_c = 3$ is the number of colours.

 \rightarrow If quarks have spin 0 the angular distribution should be:

$$
\frac{d\sigma}{d\cos\theta}(e^+e^- \to q\bar{q}) = N_c e_q^2 \frac{\pi \alpha^2}{2Q^2} (1 - \cos^2\theta)
$$

Figure 64: The angular distribution of the quark jet in $e^+e^$ annihilations, compared with models.

The experimentally measured angular dependence of jets is clearly following(1+cos² θ) \Rightarrow jets are associated with spin-1/2 quarks.

If a high-momentum (hard) gluon is emitted by a quark or antiquark, it fragments to a jet of its own, which leads to a three-jet event:

Figure 65: A three-jet event in an e⁺e⁻annihilation as seen by the JADE experiment.

The probability for a quark to emit a gluon is proportional to α_s and by comparing the rate of two-jet and three-jet events one can determine α_{s} .

 $\alpha_s = 0.15 \pm 0.03$ for $E_{CM} = 30$ to 40 GeV

Figure 66: The principal scheme of hadron production in e⁺e⁻ annihilations. Hadronization (= fragmentation) begins at distances of order 1 fm between the partons.

 By measuring angular distributions of jets one can confirm models where gluons are spin-1 bosons. This is done by measuring:

$$
cos \phi = \frac{sin \theta_2 - sin \theta_3}{sin \theta_1}
$$

where the angles are described below:

Figure 67: An angular distribution of jets compared to QCD calculations with a spin 0 and a spin 1 gluon.