VII. QCD, jets and gluons

Quantum Chromodynamics (QCD)

- Quantum Chromodynamics (QCD) is the theory of strong interactions.
- Interactions are carried out by a <u>massless</u> spin-1 particle <u>gauge boson</u>
- In quantum electrodynamics (QED) gauge bosons are photons, in QCD gluons
- → Gauge bosons couple to conserved charges: photons in QED to electric charges (Q), and gluons in QCD to colour charges: colour hypercharge (Y^c) and colour isospin charge (I₃^c).
- The strong interaction acts the same on u,d,s,c,b and t quarks because the strong interaction is **flavour-independent**.

REMINDER:

In the quark model we have introduced flavour hypercharge (Y) and flavour isospin (I_3) in addition to the electric charge (Q).

	Q	Y	I_3		Q	Y	I_3
d	-1/3	1/3	-1/2	\overline{d}	1/3	-1/3	1/2
u	2/3	1/3	1/2	$\frac{-}{u}$	-2/3	-1/3	-1/2
S	-1/3	-2/3	0	$\frac{\overline{s}}{s}$	1/3	2/3	0
c	2/3	4/3	0	$\frac{\overline{c}}{c}$	-2/3	-4/3	0
b	-1/3	-2/3	0	$\overline{\mathbf{b}}$	1/3	2/3	0
t	2/3	4/3	0	\overline{t}	-2/3	-4/3	0

In quantum chromodynamics we introduce in a similar fashion colour hypercharge (Y^c) and colour isospin charge (I_3^c) .

	Y^c	I_3^c		Y ^c	I_3^c
r	1/3	1/2	$\frac{\overline{r}}{r}$	-1/3	-1/2
g	1/3	-1/2	$\frac{\overline{g}}{g}$	-1/3	1/2
b	-2/3	0	$\overline{\mathbf{b}}$	2/3	0

Gluons carry colour charges themselves!

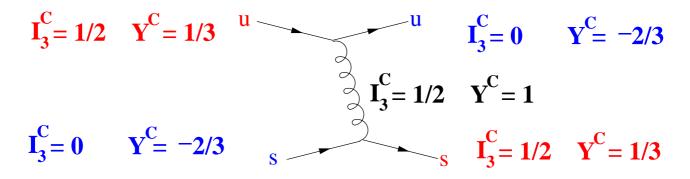


Figure 58: Gluon exchange between quarks.

The colour quantum numbers of the gluon in the figure above are:

$$I_3^C = I_3^C(r) - I_3^C(b) = \frac{1}{2}$$

$$Y^C = Y^C(r) - Y^C(b) = 1$$
(86)

Gluon colour wavefunctions:

Gluons can couple to other gluons since gluons carry colour charge!

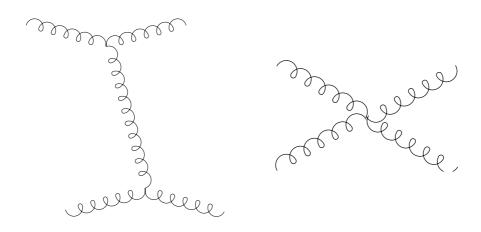


Figure 59: Lowest-order contributions to gluon-gluon scattering.

- All observed states (all mesons and baryons) have zero colour charge colour confinement.
- Gluons does not exist as free particles since they have colour charge.
- Bound colourless states of gluons are called *glueballs* (not detected experimentally yet).

The principle of asymptotic freedom:

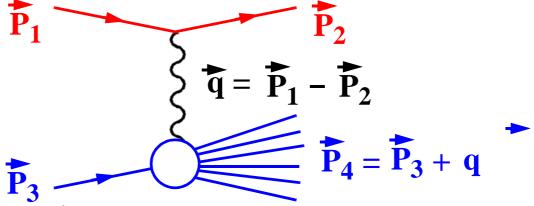
- At short distances the strong interactions are weaker \Rightarrow quarks and gluons are essentially free particles \Rightarrow the interaction can be described by the lowest order diagrams.
- At large distances the strong interaction gets stronger ⇒ the interaction can be described by high-order diagrams.
- The quark-antiquark potential is:

$$V(r) = -\frac{4}{3} \frac{\alpha_s}{r} \qquad (r < 0, 1 fm)$$

$$V(r) = \lambda r \qquad (r \ge 1 fm)$$

where α_s is the strong coupling constant and r the distance between the quark and the antiquark.

Due to the complexity of high-order diagrams, the very process of confinement can not be calculated analytically \Rightarrow only numerical models are available.



where \mathbf{P} and \mathbf{q} are energy-momentum four vectors:

$$\overrightarrow{P} = (E, \overrightarrow{p}) = (E, p_x, p_y, p_z)$$

$$\overline{\mathbf{q}} = (\mathbf{E}_{\mathbf{q}}, \overline{\mathbf{q}}) = \overline{\mathbf{P}}_{1} - \overline{\mathbf{P}}_{2} = (\mathbf{E}_{1} - \mathbf{E}_{2}, \overline{\mathbf{P}}_{1} - \overline{\mathbf{P}}_{2})$$

the momentum and energy transfer is:

$$\mathbf{q} = |\overline{\mathbf{q}}| = |\overline{\mathbf{P}}_1 - \overline{\mathbf{P}}_2|$$
 $\mathbf{v} = \mathbf{E}_\mathbf{q} = \mathbf{E}_1 - \mathbf{E}_2$

(where E and P are in the restframe of particle 3).

The energy-momentum transfer is given by:

$$\mathbf{Q}^2 = -\mathbf{\overline{q}} \cdot \mathbf{\overline{q}} = -(\mathbf{\overline{P}}_1 - \mathbf{\overline{P}}_2)^2$$

$$\mathbf{Q}^2 = \mathbf{\overline{q}} \cdot \mathbf{\overline{q}} - \mathbf{E}_q^2 = (\mathbf{\overline{P}}_1 - \mathbf{\overline{P}}_2)^2 - (\mathbf{E}_1 - \mathbf{E}_2)^2$$

This can be regarded as the invariant mass of the exchanged gauge boson since the squared mass of a particle is given by $\mathbf{M}^2 = \mathbf{P} \cdot \mathbf{P}$

The invariant mass of the hadrons is given by:

$$\mathbf{W}^2 = \mathbf{P}_4 \cdot \mathbf{P}_4 = (\mathbf{P}_3 + \mathbf{q})^2$$

The strong coupling constant

- The strong coupling constant α_s is the analogue in QCD of α_{em} and it is a measure of the strength of the interaction.
- \rightarrow α_s is not a true constant but a "running constant" since it decreases with increasing Q².
- In leading order of QCD, α_s is given by

$$\alpha_s = \frac{12\pi}{(33 - 2N_f)\ln(Q^2/\Lambda^2)} \tag{87}$$

Here N_f is the number of allowed quark flavours, and $\Lambda \approx 0.2$ GeV is the QCD scale parameter which has to be defined experimentally.

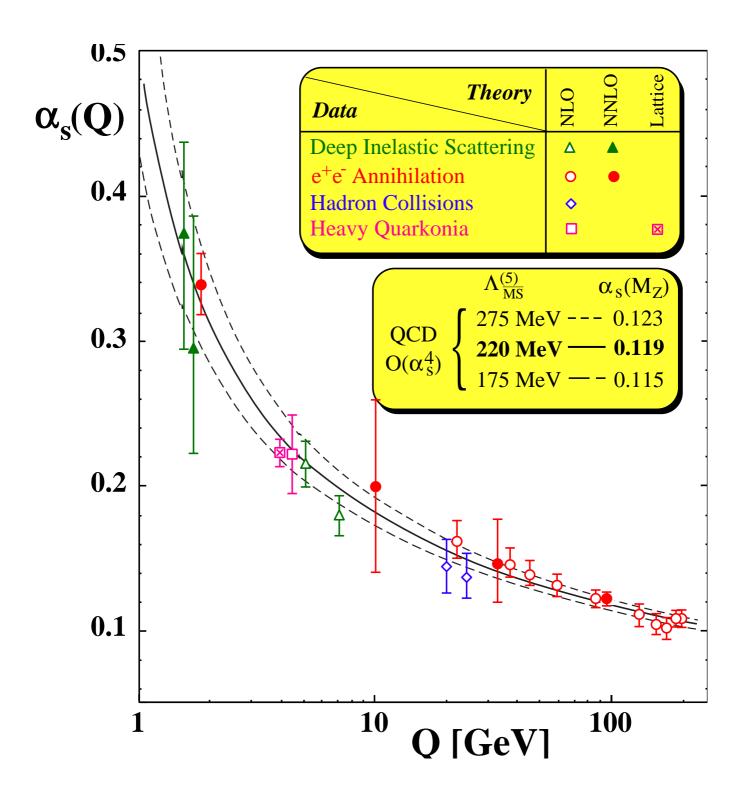
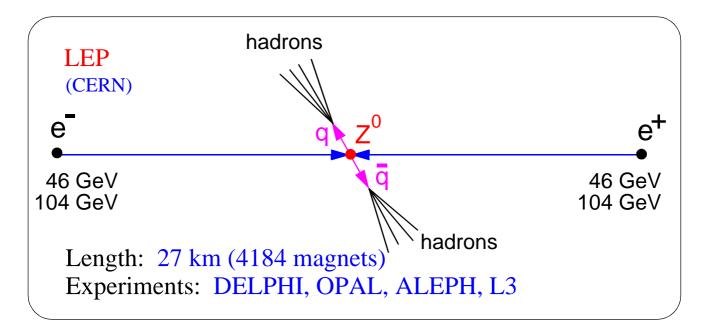
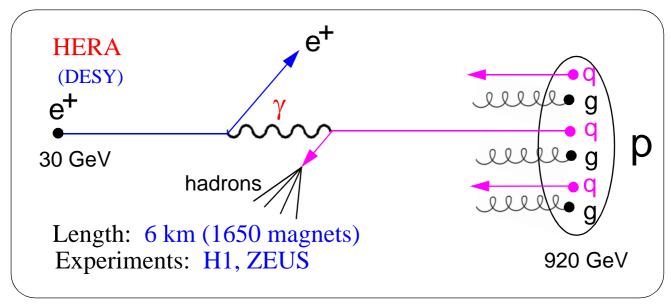
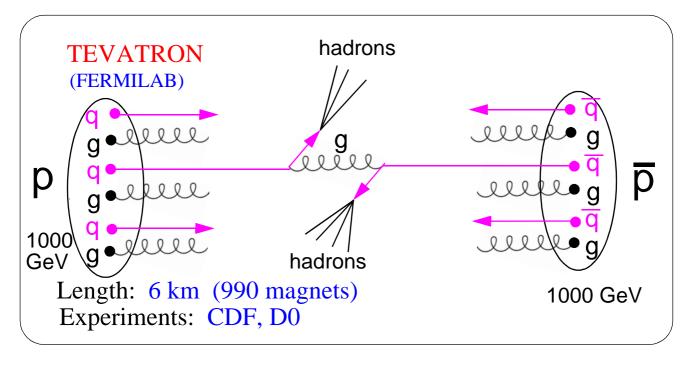


Figure 60: The running of the strong coupling constant.

Different types of accelerators







Electron-positron annihilation

A clean process with which to study QCD is:

$$e^+ + e^- \rightarrow \gamma^* \rightarrow \text{hadrons}$$
 (88)

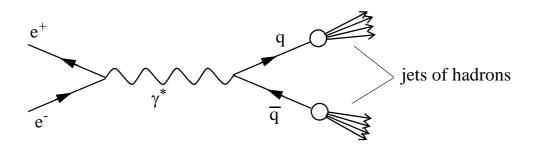


Figure 61: e⁺e⁻ annihilation into hadrons.

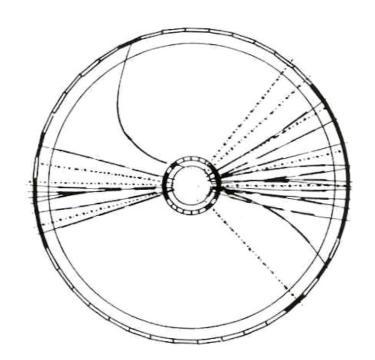


Figure 62: An e⁺e⁻ annihilation event in which two quark jets were created (the event was recorded by the JADE experiment at DESY).

In the lowest order e⁺e⁻ annihilation process, a photon or a Z⁰ is produced which converts into a quark-antiquark pair.

- The quark and the antiquark *fragment* into observable hadrons.
- Since the quark and antiquark momenta are equal and counterparallel, hadrons are produced in two *jets* of equal energies going in opposite direction.
- The direction of a jet reflects the direction of the corresponding quark.

The total cross-section of $e^+e^- \rightarrow hadrons$ is often expressed as:

$$R \equiv \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

The cross section for muon production and hadron production is the same if the number of quark flavours and colours are taken into account:

$$R = N_c \sum e_q^2$$

- Here $N_c = 3$ is the number of colours and e_q is the charge of the quarks.
- \rightarrow If $\sqrt{s} < m_{\psi}$ then

$$\mathbf{R} = N_c(e_u^2 + e_d^2 + e_s^2) = 3 \left((-1/3)^2 + (-1/3)^2 + (2/3)^2 \right) = 2$$

If
$$\sqrt{s} < m_{\Upsilon}$$
 then $R = N_c(e_u^2 + e_d^2 + e_s^2 + e_c^2) = 10/3$ and

If
$$\sqrt{s} > m_{\Upsilon}$$
 then $R = N_c(e_u^2 + e_d^2 + e_s^2 + e_c^2 + e_b^2) = 11/3$

If the radiation of hard gluons is taken into account, an extra factor proportional to α_s has to be added:

$$R = 3\sum_{q} e_{q}^{2} \left(1 + \frac{\alpha_{s}(Q^{2})}{\pi} \right)$$

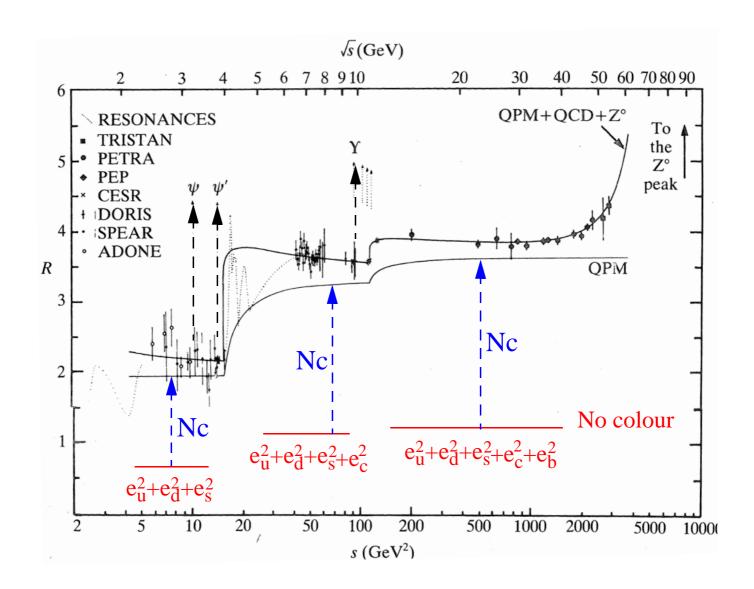


Figure 63: The measured R-value and the predicted R-value for different theoretical assumptions.

A study of the angular distribution of the jets give information about the spin of the quarks.

The angular distribution of the process

$$e^+ + e^- \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$$
 is given by:

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to \mu^+\mu^-) = \frac{\pi\alpha^2}{2Q^2}(1+\cos^2\theta)$$

where θ is the production angle with respect to the direction of the colliding electrons.

If quarks have spin 1/2 they should have the following angular distribution:

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to q\bar{q}) = N_c e_q^2 \frac{\pi\alpha^2}{2Q^2}(1 + \cos^2\theta)$$

where e_q is the fractional charge of a quark and N_c = 3 is the number of colours.

If quarks have spin 0 the angular distribution should be:

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to q\bar{q}) = N_c e_q^2 \frac{\pi\alpha^2}{2Q^2}(1 - \cos^2\theta)$$

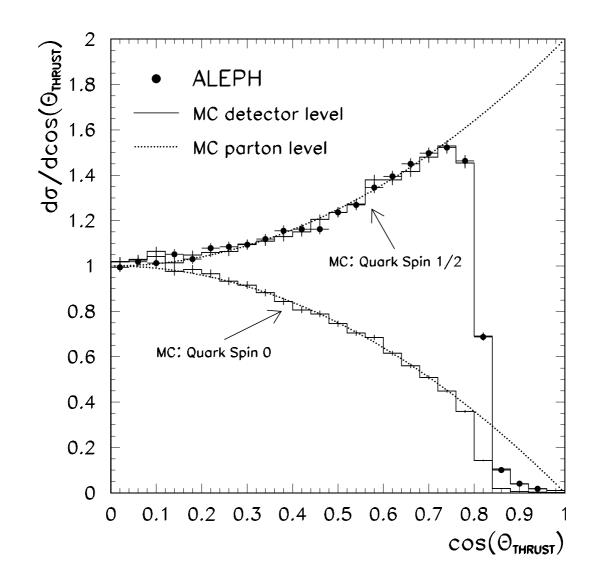
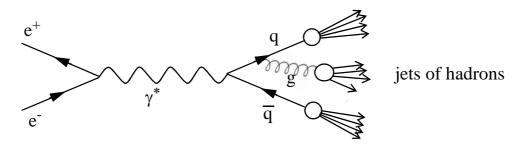


Figure 64: The angular distribution of the quark jet in e⁺e⁻ annihilations, compared with models.

The experimentally measured angular dependence of jets is clearly following(1+cos²θ) ⇒ jets are associated with spin-1/2 quarks.

If a high-momentum (hard) gluon is emitted by a quark or antiquark, it fragments to a jet of its own, which leads to a three-jet event:



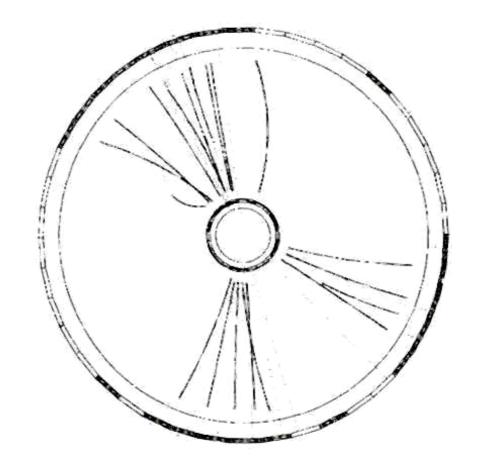


Figure 65: A three-jet event in an e⁺e⁻annihilation as seen by the JADE experiment.

The probability for a quark to emit a gluon is proportional to α_s and by comparing the rate of two-jet and three-jet events one can determine α_s .

$$\rightarrow$$
 $\alpha_{\rm s}$ =0.15 \pm 0.03 for E_{CM}=30 to 40 GeV

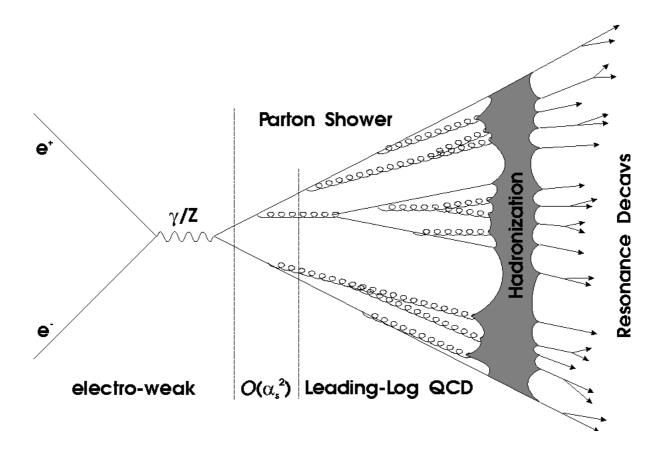
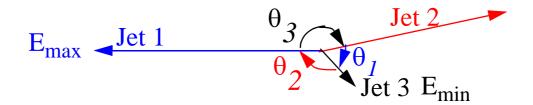


Figure 66: The principal scheme of hadron production in e⁺e⁻ annihilations. Hadronization (= fragmentation) begins at distances of order 1 fm between the partons.

By measuring angular distributions of jets one can confirm models where gluons are spin-1 bosons. This is done by measuring:

$$\cos\phi = \frac{\sin\theta_2 - \sin\theta_3}{\sin\theta_1}$$

where the angles are described below:



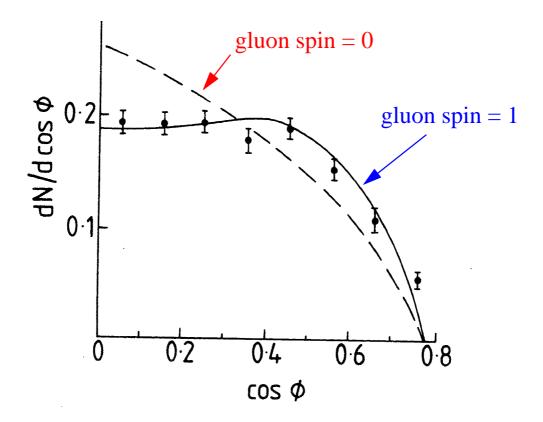


Figure 67: An angular distribution of jets compared to QCD calculations with a spin 0 and a spin 1 gluon.