VII. QCD, jets and gluons

Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is the theory of strong interactions.

Interactions are carried out by a <u>massless</u> spin-1 particle – <u>gauge boson</u>

 In quantum electrodynamics (QED) gauge bosons are photons, in QCD – gluons

Gauge bosons couple to conserved charges:
 photons in QED – to electric charges, and gluons in QCD – to colour charges

The strong interaction acts the same on u,d,s,c,b and t quarks because the strong interaction is flavour-independent.

Gluons carry colour charges themselves !

$$I_3^C = 1/2$$
 $Y^C = 1/3$ U^{U} $I_3^C = 0$ $Y^C = -2/3$
 $I_3^C = 1/2$ $Y^C = 1$
 $I_3^C = 0$ $Y^C = -2/3$
 S $I_3^C = 1/2$ $Y^C = 1$
 $Y^C = 1/3$

Figure 58: Gluon exchange between quarks.

The colour quantum numbers of the gluon in the figure above are:

$$I_{3}^{C} = I_{3}^{C}(r) - I_{3}^{C}(b) = \frac{1}{2}$$

$$Y^{C} = Y^{C}(r) - Y^{C}(b) = 1$$
(86)

Gluon colour wavefunctions:	$\chi_{g_1}^{c} = \mathbf{r} \ \overline{\mathbf{g}}$	$I_{3}^{C} = 1$	$\mathbf{Y}^{\mathrm{C}} = 0$
	$\chi_{g_2}^{c} = \overline{\mathbf{r}} \mathbf{g}$	$I_{3}^{C} = -1$	$\mathbf{Y}^{\mathbf{C}} = 0$
	$\chi_{g_3}^{c} = \mathbf{r} \mathbf{\overline{b}}$	$I_{3}^{C} = 1/2$	$\mathbf{Y}^{\mathbf{C}} = 1$
	$\chi_{g_4}^c = \overline{\mathbf{r}} \mathbf{b}$	$I_{3}^{C} = -1/2$	$\mathbf{Y}^{\mathrm{C}} = -1$
	$\chi^{\mathrm{C}}_{\mathbf{g}_{5}} = \mathbf{g} \overline{\mathbf{b}}$	$I_{3}^{C} = -1/2$	$\mathbf{Y}^{\mathrm{C}} = 1$
	$\chi^{\rm C}_{{f g} 6} = {f \overline g} {f b}$	$I_{3}^{C} = 1/2$	$\mathbf{Y}^{\mathbf{C}} = -1$
	$\chi^{\rm C}_{\rm g7} = 1/\sqrt{2} \left({\rm g} \overline{\rm g} - \overline{\rm r} {\rm r} \right)$	$I_{3}^{C} = 0$	$\mathbf{Y}^{\mathbf{C}} = 0$
	$\chi_{g_8}^{\bar{C}} = 1/\sqrt{6} \left(g \overline{g} - r \overline{r} - 2 b \overline{b} \right)$	$I_{3}^{C} = 0$	$\mathbf{Y}^{\mathrm{C}} = 0$

Gluons can couple to other gluons since gluons carry colour charge !

Figure 59: Lowest-order contributions to gluon-gluon scattering.

- All observed states have zero colour charge colour confinement.
- Gluons does not exist as free particles since they have colour charge.
- Bound colourless states of gluons are called glueballs (not detected experimentally yet).

• The principle of asymptotic freedom:

At short distances the strong interactions are weaker \Rightarrow quarks and gluons are essentially free particles \Rightarrow the interaction can be described by the lowest order diagrams.

At large distances the strong interaction gets stronger \Rightarrow the interaction can be described by high-order diagrams.

The quark-antiquark potential is:

$$V(r) = -\frac{4}{3} \frac{\alpha_s}{r} \qquad (r < 0, 1 fm)$$
$$V(r) = \lambda r \qquad (r \ge 1 fm)$$

where α_s is the strong coupling constant and *r* the distance between the quark and the antiquark.

 \rightarrow Due to the complexity of high-order diagrams, the very process of confinement can not be calculated analytically \Rightarrow only numerical models are available.

$$\mathbf{\tilde{P}}_{1} \qquad \mathbf{\tilde{P}}_{2}$$

$$\mathbf{\tilde{P}}_{3} \qquad \mathbf{\tilde{P}}_{4} = \mathbf{\tilde{P}}_{1} - \mathbf{\tilde{P}}_{2}$$
where $\mathbf{\tilde{P}}$ and $\mathbf{\tilde{q}}$ are energy-momentum four vectors:

$$\mathbf{\tilde{P}} = (\mathbf{E}, \mathbf{\bar{p}}) = (\mathbf{E}, \mathbf{p}_{x}, \mathbf{p}_{y}, \mathbf{p}_{z})$$

$$\mathbf{\tilde{q}} = (\mathbf{E}_{q}, \mathbf{\bar{q}}) = \mathbf{\tilde{P}}_{1} - \mathbf{\tilde{P}}_{2} = (\mathbf{E}_{1} - \mathbf{E}_{2}, \mathbf{\bar{P}}_{1} - \mathbf{\bar{P}}_{2})$$
the momentum and energy transfer is:

$$\mathbf{q} = |\mathbf{\bar{q}}| = |\mathbf{\bar{P}}_{1} - \mathbf{\bar{P}}_{2}|$$

$$\mathbf{v} = \mathbf{E}_{q} = \mathbf{E}_{1} - \mathbf{E}_{2}$$
(where E and P are in the restframe of particle 3).
The energy-momentum transfer is given by:

$$\mathbf{Q}^{2} = -\mathbf{\bar{q}} \cdot \mathbf{\bar{q}} = -(\mathbf{\bar{P}}_{1} - \mathbf{\bar{P}}_{2})^{2}$$

$$\mathbf{Q}^{2} = \mathbf{\bar{q}} \cdot \mathbf{\bar{q}} - \mathbf{E}_{q}^{2} = (\mathbf{\bar{P}}_{1} - \mathbf{\bar{P}}_{2})^{2} - (\mathbf{E}_{1} - \mathbf{E}_{2})^{2}$$
This can be regarded as the invariant mass of the exchanged gauge boson since the squared mass of a particle is given by
$$\mathbf{M}^{2} = \mathbf{\bar{P}} \cdot \mathbf{\bar{P}}$$

The invariant mass of the hadrons is given by:

$$\mathbf{W}^2 = \mathbf{P}_4 \cdot \mathbf{P}_4 = (\mathbf{P}_3 + \mathbf{q})^2$$

 \rightarrow

The strong coupling constant

The strong coupling constant α_s is the analogue in QCD of α_{em} and it is a measure of the strength of the interaction.

α_s is not a true constant but a "running constant" since it decreases with increasing Q².

In leading order of QCD, α_s is given by

$$\alpha_s = \frac{12\pi}{(33 - 2N_f)\ln(Q^2/\Lambda^2)}$$
(87)

Here N_f is the number of allowed quark flavours, and $\Lambda \approx 0.2$ GeV is the QCD scale parameter which has to be defined experimentally.

Figure 60: The running of the strong coupling constant.

Different types of accelerators

Electron-positron annihilation

A clean process with which to study QCD is:

 $e^+ + e^- \rightarrow \gamma^* \rightarrow \text{hadrons}$ (88)

Figure 61: e^+e^- annihilation into hadrons.

Figure 62: An e⁺e⁻ annihilation event in which two quark jets were created (the event was recorded by the JADE experiment at DESY).

In the lowest order e^+e^- annihilation process, a photon or a Z^0 is produced which converts into a quark-antiquark pair.

- The quark and the antiquark *fragment* into observable hadrons.
- Since the quark and antiquark momenta are equal and counterparallel, hadrons are produced in two *jets* of equal energies going in opposite direction.
- The direction of a jet reflects the direction of the corresponding quark.

→ The total cross-section of $e^+e^- \rightarrow hadrons$ is often expressed as:

$$R \equiv \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

The cross section for muon production and hadron production is the same if the number of quark flavours and colours are taken into account:

$R = N_c \sum e_q^2$

Here $N_c = 3$ is the number of colours and e_q is the charge of the quarks.

$$f \sqrt{s} < m_{\psi} \text{ then}$$

$$R = N_{c}(e_{u}^{2} + e_{d}^{2} + e_{s}^{2}) = 3 ((-1/3)^{2} + (-1/3)^{2} + (2/3)^{2}) = 2$$

$$If \sqrt{s} < m_{\Upsilon} \text{ then } R = N_{c}(e_{u}^{2} + e_{d}^{2} + e_{s}^{2} + e_{c}^{2}) = 10/3 \text{ and}$$

$$If \sqrt{s} > m_{\Upsilon} \text{ then } R = N_{c}(e_{u}^{2} + e_{d}^{2} + e_{s}^{2} + e_{c}^{2}) = 11/3$$

If the radiation of hard gluons is taken into account, an extra factor proportional to α_s has to be added:

$$R = 3\sum_{q} e_{q}^{2} \left(1 + \frac{\alpha_{s}(Q^{2})}{\pi} \right)$$

Figure 63: The measured R-value and the predicted R-value for different theoretical assumptions.

A study of the angular distribution of the jets give information about the spin of the quarks.

The angular distribution of the process $e^+ + e^- \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$ is given by: $\frac{d\sigma}{d\cos\theta}(e^+e^- \rightarrow \mu^+\mu^-) = \frac{\pi\alpha^2}{2Q^2}(1 + \cos^2\theta)$

where θ is the production angle with respect to the direction of the colliding electrons.

If quarks have spin 1/2 they should have the following angular distribution:

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to q\bar{q}) = N_c e_q^2 \frac{\pi\alpha^2}{2Q^2}(1 + \cos^2\theta)$$

where e_q is the fractional charge of a quark and $N_c = 3$ is the number of colours.

If quarks have spin 0 the angular distribution should be:

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to q\bar{q}) = N_c e_q^2 \frac{\pi\alpha^2}{2Q^2}(1 - \cos^2\theta)$$

Figure 64: The angular distribution of the quark jet in e⁺e⁻ annihilations, compared with models.

The experimentally measured angular dependence of jets is clearly following(1+ $\cos^2\theta$) \Rightarrow jets are associated with spin-1/2 quarks. If a high-momentum (hard) gluon is emitted by a quark or antiquark, it fragments to a jet of its own, which leads to a three-jet event:

Figure 65: A three-jet event in an e⁺e⁻annihilation as seen by the JADE experiment.

The probability for a quark to emit a gluon is proportional to α_s and by comparing the rate of two-jet and three-jet events one can determine α_s .

 α_s =0.15 ± 0.03 for E_{CM}=30 to 40 GeV

Figure 66: The principal scheme of hadron production in e⁺e⁻ annihilations. Hadronization (= fragmentation) begins at distances of order 1 fm between the partons.

By measuring angular distributions of jets one can confirm models where gluons are spin-1 bosons. This is done by measuring:

$$\cos\phi = \frac{\sin\theta_2 - \sin\theta_3}{\sin\theta_1}$$

where the angles are described below:

Figure 67: An angular distribution of jets compared to QCD calculations with a spin 0 and a spin 1 gluon.